
Code Conversion Workbench
Manual

Code Conversion Workbench Manual

Overview1

Overview 51.1

GUI2

Importing Scripts with the Quick Start Feature 72.1

Using the Code Conversion Workbench 122.2

Detailed Code Conversion Info3

Using the VFP Code Conversion Workbench 293.1

Using the Microsoft Access Code Conversion Workbench - Access to FmPro
Conversions

343.2

Using the FmPro Code Conversion Workbench - FmPro to Access
Conversions

413.3

Using the FmPro Code Conversion Workbench - FmPro to Servoy Conversions 453.4

Using the FmPro Code Conversion Workbench - FmPro to PHP Conversions 493.5

Using the FmPro Code Conversion Workbench - FmPro to LiveCode
Conversions

533.6

Using the VFP Code Conversion Workbench - Visual FoxPro to .NET
Conversions

573.7

Using Google Gemini Models 613.8

Installing Ollama for Running LLMs Locally 633.9

Batch Processing of Scripts 743.10

Training4

Training Machine Learning Models 834.1

Troubleshooting5

Troubleshooting - Code Conversion Workbench 925.1

Code Conversion Workbench Manual - 4

Overview

Code Conversion Workbench Manual - 5

Overview

The Code Conversion Workbench feature within the AI Accelerated version of FmPro Migrator
Platinum Edition is used to convert code from FileMaker Pro, FoxPro 2.6, Microsoft Access, Visual
FoxPro, COBOL and other programming languages. The Code Conversion Workbench converts
code into over 50 different programming languages by using multiple machine learning models.
As the code is converted, the files are written into the output directory, and can also be copied via
the clipboard and pasted directly into FileMaker Pro or other development environments.

Revision 6
FmPro Migrator 11.73
1/26/2026

Videos showing the conversion process are available on You Tube at: @FmProMigrator

[Revision Notes: Added info about the new script search and sorting features and replacement of
the ScriptStatus.JSON file with columns added to the Scripts table of the MigrationProcess.db3
SQLite database.]

https://www.fmpromigrator.com/order/index.html
https://www.fmpromigrator.com/order/index.html
https://www.youtube.com/@FmProMigrator

Code Conversion Workbench Manual - 6

GUI

Code Conversion Workbench Manual - 7

Importing Scripts with the Quick Start Feature

The Quick Start feature makes it easy to import scripts as text files from any programming
language directly into the Code Conversion Workbench. This feature is especially helpful for
quickly building Proof of Concept projects during testing.

Note: However this feature is not intended to import database tables, layouts/forms/reports or
relationships or Script Workspace scripts from FileMaker Pro. If you end up following the full
import process when converting a Visual FoxPro project after using the Quick Start feature, the
scripts of the project will get imported twice.

Import Scripts Menu

1) Select the File -> Import Scripts into Code Conversion Workbench... menu in the FmPro
Migrator main application window.

Code Conversion Workbench Manual - 8

Select Programming Language in Import Scripts Dialog

The Programming Language menu includes commonly used items including:
FoxPro 2.6
Visual FoxPro
Other...

2) When selecting FoxPro 2.6 or Visual FoxPro, the Programming Language and file Extension
fields will be filled in automatically.

When selecting Other... for the Programming Language, manually enter the name and file
extension for the scripts to be imported. The example shown here is showing the import of
COBOL/.cbl for the Programming Language and file extension. This is just an example, since any
text file format can be imported for automated conversion. The Programming Language name
will be used directly in the prompt sent to the LLMs for processing.

3) Click the Browse button to select the folder of scripts which will be imported.

Code Conversion Workbench Manual - 9

Select Import Folder

Select the folder of scripts you want imported into the Code Conversion Workbench.

Click OK Button

5) After selecting the scripts folder, click the (5) Ok button to perform the import. Scripts will be
searched recursively starting with the selected folder.

Code Conversion Workbench Manual - 10

Imported Scripts in Code Conversion Workbench

6) Imported scripts are displayed in the grid at the left side of the window. (7) The name of the
programming language is displayed in the generic script icon above the grid and also (8) in the
Source menu at the right side of the window.

Overwrite Project Dialog

FmPro Migrator uses a SQLite project file named MigrationProcess.db3 for storing conversion
project metadata. When doing a Quick Start import, the MigrationProcess.db3 file will be written
into the top level folder selected in the import dialog.

If you click:
Cancel - The MigrationProcess.db3 file won't be overwritten and no import of scripts will be
performed.
Overwrite - The existing MigrationProcess.db3 file will be renamed using the current date/time, a
new MigrationProcess.db3 file will be created and the scripts will be imported. This is a good

Code Conversion Workbench Manual - 11

option if you haven't started the conversion project yet and you added scripts to the import folder
since the previous import was performed.
Open - The existing MigrationProcess.db3 file will be opened and used by the Code Conversion
Workbench and scripts won't be imported.

Editing the Programming Language

The Source language field is directly editable. Editing the contents of this field can be helpful if you
accidentally selected one of the other standard options and you need to revert that change. The
contents of this field will be automatically saved to preferences, ready to be restored the next time
the Code Conversion Workbench is opened.

Code Conversion Workbench Manual - 12

Using the Code Conversion Workbench

The Code Conversion Workbench is included with the AI Accelerated version of FmPro Migrator
Platinum Edition.

The Code Conversion Workbench consists of a single application window used to manage the
conversion of hundreds or thousands of scripts into over 50 programming languages. As scripts
are completed, they can be checked off in the grid of script on the left side of the window.

The source of scripts used by the Code Conversion Workbench is the MigrationProcess.db3
SQLite database file which is created and used by FmPro Migrator. Before performing code
conversion, the scripts need to already be imported into the Scripts tab of the Migration Process
window of FmPro Migrator.

Each source database is used to prefix the name of the code conversion, so if Visual FoxPro is
the source database type, the title across the window will be: VFP Code Conversion Workbench.

Most screenshots in this manual are from macOS, but the tool works exactly the same way on
Windows.

Code Conversion Workbench Manual - 13

Code Conversion Workbench Window

Most features in this window include tooltips, described in this manual.

1) Window Scale Factor - Pop-up Menu

The Code Conversion Workbench window will auto-scale in size based upon the size of your
display. You can change the window scaling by selecting a different value from this popup menu.
The Window Scale Factor Menu tooltip will be displayed when you move the cursor over this

Code Conversion Workbench Manual - 14

normally hidden popup menu.

2) Load Data Button

If there are scripts located within the FmPro Migrator MigrationProcess.db3 SQLite project file, the
grid of scripts should be displayed automatically as soon as the window opens. If there weren't
any scripts in the MigrationProcess.db3 file when the Code Conversion Workbench window was
opened, the list of scripts would be empty. Once you import scripts using FmPro Migrator, click the
Load Data button to populate this grid with the list of scripts.

The scripts and Status checkmarks/Completed/Not Started text displayed in this grid are read
from the MigrationProcess.db3 file.

Note: If the Code Conversion Workbench is running in Demo mode, only a list of demo scripts will
be displayed, not the actual scripts within the MigrationProcess.db3 file.

Note: Prior to FmPro Migrator 11.73, the ScriptsStatus.JSON file was used to store the status
check marks. The contents of the ScriptsStatus.JSON file are now imported and updated within
the extra columns added to the Scripts table of the MigrationProcess.db3 file. The previously
used ScriptsStatus.JSON file is renamed to ScriptsStatus.JSON-old so that it won't be
continuously re-imported. Triggers on the Script_Text column keep the CCW_Size column
updated automatically.

Code Conversion Workbench Manual - 15

3) Scripts Grid

The scripts grid provides a way for the developer to select specific scripts, convert them and check
them off as being completed by clicking the checkmark column. The Completed ? of ? labels
above the grid give a running count of the conversion status of the scripts.

Each script has an ID for reference purposes and its size in bytes and name are listed in the grid.
Long script names are viewable with the scrollbar at the bottom of the grid.

Clicking any script causes it to be read from the database and displayed in the Source Script field.
Clicking the script a 2nd time (to set its check/unchecked status) does not reload the script - in
order to keep the contents of the Converted Script field visible.

Searching the Scripts Grid

(1) Click in the search field to search the scripts by name.

Code Conversion Workbench Manual - 16

??* Begins With Search

Entering a * as the last character - performs a search for scripts which begin with the entered text.
When the search results are displayed, the "Completed" totals will be recalculated above the grid.
Clicking the checkmark column also updates the totals showing the number of completed scripts
check marked within the total number of found scripts.

*?? Ends With Search

Entering a * as the first character - performs a search for scripts which end with the entered text.

Contains Text Search

Search text without a modifier, performs a search for scripts which contain the entered text
anywhere within the script name.

Code Conversion Workbench Manual - 17

Grid Performance with Thousands of Scripts

A grid displaying 12,000 scripts will perform slower than a grid showing only a 1000 or fewer
scripts! The synthetic test of over 12,000 scripts shown here takes about 6 seconds to perform a
search and 11 seconds to register a checkmark click and about 6 seconds to register a click
which displays a script in the Source Script field.
Performing a search showing about 1000 records improves the performance to be nearly instant.
Therefore searching improves the usability of the UI while reducing the number of scripts to a
manageable number.

Code Conversion Workbench Manual - 18

Scripts Grid Sort Feature

Clicking the ID, Size or Script Name columns sorts the contents of the grid as a numeric sort (ID,
Size columns) or a text sort (Script Name) column. Sorting works in search or non-search modes.

4) Source Database Type Menu

Source database types include: FileMaker Pro, FoxPro 2.6, Microsoft Access and Visual FoxPro as
well as any type of script which has been imported into the Code Conversion Workbench like
COBOL shown here. The Source field behind the menu is also directly editable.

Selecting the Source Database changes the title across the top of the window and re-writes the
contents of the Command window.

https://youtu.be/4-F2ZYBTuMo

Code Conversion Workbench Manual - 19

5) Output Language Menu

Selecting one of the over 50 output languages from the TIOBE index will rewrite the Command
prompt for the selected language. Some of the languages include the specification of a
framework and database name based upon the database selected on the main screen of FmPro
Migrator as the output database. The text in the Command field can be manually updated to
include any additional details required for the conversion.

Code Conversion Workbench Manual - 20

6) Procedure/Function Menu

If the main script is too large for processing by a specific machine learning model, red text "Script
Too Large" may be displayed above the Source script field. If this occurs, then it is possible to
break of some scripts (like Visual FoxPro) automatically into individual procedures/functions
individually.

Tip: Even if the "Script Too Large" text is displayed, go ahead and try converting the script anyhow -
most of the time it will still work with modern LLMs.

Visual FoxPro scripts often contain multiple procedures/functions. If it is necessary to send
smaller pieces of text to the AI models for processing, this menu enables selecting individual
procedures/functions for sending to the AI model for processing. In general, it is best to send the
entire script for processing so that the LLM has the context of the entire script.

Code Conversion Workbench Manual - 21

7) Section Menu

Note: With recent timing improvements within the Code Conversion Workbench - breaking up the
scripts further is not usually required anymore (unless you are using Ollama to run the models
locally).

Some individual procedure/functions could still be too large, including the example shown here. If
the "Script Too Large" script is displayed for an individual procedure/function then the Section
sub-menu will also be displayed. This enables the large script to be broken up into 5 more
sections (with opening/closing procedure/function text added to each section).

By the way, just because the "Script Too Large" text is displayed doesn't always mean that a script
won't be processed by the AI model. You can always try sending a large script for processing, and
then see if you get an error from the model.

Code Conversion Workbench Manual - 22

8) Vendor Menu

There are 7 AI vendors listed in the Vendor model at this time. Anthropic, Google, OpenAI, Ollama
and xAI are the vendors supported at this time, as the others are intended for future
enhancements.
Ollama enables running LLMs locally and is reserved for Custom Dev and Site License Editions
of FmPro Migrator.

9) API Key Type

By default, the Code Conversion Workbench will use the API key created by .com Solutions Inc.,
so "dcsi" is the default option. If you run out of AI tokens, you can generate and pay for your own
API key at OpenAI.

User API Key Field

To enter your own API key, select the User menu item, a new API Key field will be shown. Clicking
the URL button opens a web browser to the vendor website where you can create an account and
generate your own API key. This key gets saved with the app preferences for each vendor so you
only have to enter it once.

Code Conversion Workbench Manual - 23

10) AI Model Name

gpt-3.5-turbo will be selected as the default model. gpt-4 is also available, and generally does a
significantly better job when performing conversions. But sometimes one model or the other gets
overloaded so you might want to switch to another one.

Model Token Size Tooltip

Hovering the cursor over the model menu, displays the number of tokens accepted by the
selected AI model. The first number represents the number of input tokens, and the 2nd number
represents the number of output tokens supported by the model. These numbers may not always
be updated perfectly with each model as it is based upon values written into the Code Conversion
Workbench - so new models could have higher values.

Code Conversion Workbench Manual - 24

11) Model List Refresh Button

The list of available AI models is built into the app during development. You can refresh the list of
models by clicking the Refresh button. The list of models displayed in the Model menu represents
the models which are officially supported by the Code Conversion Workbench. Holding the Shift
key when clicking the Refresh button displays all of the models available from the selected
vendor. Selecting one of the unsupported models will generally result in an error message.
Updating the list of models with the refresh button does save these models to the FmPro Migrator
preferences stored on disk for each vendor. When first opened, the Code Conversion Workbench
includes the lists of models which were available during development.

12) Tokens Used Today Label & Usage Tooltip

The number to the right of the Tokens Used Today text label shows the number of tokens used
over the last 24 hours. Hovering the cursor over this number will display the number of tokens
used during the most recent script conversion. In this example, 1691 tokens were used for the
prompt and 799 tokens were used for the completed script which was returned by the model.

Tokens Available per Day Tooltip

Hovering the cursor over the Tokens Used Today label will display the number of tokens which
can be used per day for the currently selected AI model. At the present time, 500,000 tokens per
day are provided for gpt3.5-turbo and the rest of the models except for gpt4. Since it currently costs
20 times as much to use the gpt4 model, the number of tokens available per day is reduced to
25,000 when gpt4 is being used. These calculations will change over time as costs change.

Code Conversion Workbench Manual - 25

13) Output Filename Field

The name of the output script is created and saved automatically into the Converted_Scripts
folder, but it can be changed manually before pressing the Convert button. In this example the
filename consists of the name of the script followed by the name of the function and ending with
the C# file extension.

Output Filename Tooltip

The tooltip shows the actual filename written to disk. Duplicated scripts receive a timestamp in
order to preserve the original script, as you can see with this example.

14) Source Script Field

Each script is read from the MigrationProcess.db3 SQLite project file when it is clicked in the
scripts list grid. The script is written into the Source Script field, which can be manually edited if
needed.
The size of the script in characters is displayed above the top right of the field next to the Size label.
If the size of the script is estimated to be too large for the number of tokens available for the
selected model, the "Script Too Large" text will be displayed above the script. However most of the
time, you can now ignore this warning text with modern LLMs which have large context sizes.

Code Conversion Workbench Manual - 26

15) Command Field

This field provides the prompt which will be sent to the AI model. The default command for this
field is created automatically when selecting the Source database type or Output Language. It is
also editable with additional descriptive commands such as the programming language
framework or database type.

16) Convert Button

The Convert button sends the Source script, Command and system message/properties to the AI
model for processing. The results are written into the Converted Script field.

17) Converted Script Field

After clicking the Convert button, the generated script is put into the Converted Script field, and
also written into the Converted_Scripts folder within the project directory.

Code Conversion Workbench Manual - 27

18) Clipboard Icon

Clicking the clipboard icon copies the contents of the Converted Script field onto the clipboard,
ready for pasting into your IDE of choice.
When FileMaker Pro is selected as the Output Language the converted script text is converted into
commented FileMaker script XML code and placed onto the clipboard in a format which can be
directly pasted into the FileMaker Pro Script Workspace window.

18) Clipboard Icon - Anthropic/Google Gemini 3.0 Pro & FileMaker Pro Script XML

Anthropic and Google Gemini Pro 3 are the only models found so far which can produce
executable script XML for FileMaker Pro databases. When using Anthropic/Google as a vendor
with FileMaker Pro as the destination database, the prompt will include "script steps xml" instead
of just "script steps" which is used for the other vendors. The Anthropic Claude 3.5+ and Google
Gemini 3 Pro models will attempt to create executable FileMaker script XML code.

Since this code doesn't always work perfectly, it is recommended that you generate the script
twice, once using the "script steps xml" prompt and once again using the more generic "script
steps" prompt. If the Code Conversion Workbench finds the text "<fmxmlsnippet" within the script,
it will put the script onto the clipboard as a functional FileMaker script - ready for pasting into the
Script Workspace.

The 2nd time you generate the script, just get the text version of the script and paste it into
FileMaker also. This way you can compare the two scripts to see if anything is missing when it
gets pasted into FileMaker Pro.

Code Conversion Workbench Manual - 28

Detailed Code Conversion Info

Code Conversion Workbench Manual - 29

Using the VFP Code Conversion Workbench

This chapter shows how to use the VFP Code Conversion Workbench. Before performing the
code conversion with the VFP Code Conversion Workbench, you should have already imported
the Visual FoxPro project into FmPro Migrator, including tables, relationships, value lists,
forms/reports and scripts.

Visual FoxPro Conversion Button - GUI Tab

Click the Visual FoxPro Conversion button on the GUI tab of the Migration Process window of
FmPro Migrator.

https://www.fmpromigrator.com/services/vfp_conversion.html

Code Conversion Workbench Manual - 30

Visual FoxPro Conversion Window

Prior to reaching this step, you should have already selected the (1) selected the VFPExport.DBF
project folder and (2) clicked the Import button to import the VFP project into FmPro Migrator. You
may have already started converting the VFP project into another development environment which
would mean that you are ready (3) to click the Code Conversion Workbench button.

Code Conversion Workbench Manual - 31

VFP Code Conversion Workbench Window

By default, the VFP Code Conversion Workbench window opens with the (1) scripts listed in the
grid, (2) Visual FoxPro selected as the Source Database Type and (3) C# selected as the
destination language.
Depending upon the destination database selected on the main FmPro Migrator window, you
could also see FileMaker Pro or Microsoft Access VBA selected as the Output Language.

Just because the options are selected a certain way when the window opens, doesn't mean you
can't change them.
You can easily change the default settings on this window for Output Language, Vendor, API Key
Type, or AI Model - and the changes will be saved into the project or application preferences for
FmPro Migrator.

Code Conversion Workbench Manual - 32

Converting FoxPro 2.6 to Visual FoxPro

Selecting FoxPro 2.6 as the Source Database type enables the conversion of FoxPro 2.6 code into
Visual FoxPro code, including the creation of forms from the FoxPro 2.6 command line code.
Performing this conversion makes use of the text-davinci-003 model.
You will also need to break up the size of the script text manually, if there aren't any
procedures/functions.

In order to prepare the FoxPro 2.6 project for import into FmPro Migrator, perform the following
steps:

1) Install Visual FoxPro 9.
2) Make a copy of the FoxPro 2.6 project.
3) Open and convert the copied project in Visual FoxPro 9. This will upgrade all of the files
including the DBF files. This is why you want to work with a copy of the project - because the DBF
files won’t be readable in FoxPro after conversion. And you might need to continue developing the
existing FoxPro app while performing your conversion.
4) Once the FoxPro 2.6 project has been converted into Visual FoxPro 9, create a DBC and add all
of the DBF files to the DBC.

Code Conversion Workbench Manual - 33

5) Manually add 1 empty form to the Visual FoxPro 9 project.

Now you are ready to follow the existing PDF manual showing how to import the project into
FmPro Migrator for conversion.

VFP Code Conversion Workbench Demo

If you forgot to enter your license key or didn't have a license for the AI Accelerated version of
FmPro Migrator, then the VFP Code Conversion Workbench will open in Demo mode.
A pre-converted set of sample scripts will be displayed in the grid instead of the scripts from your
own Visual FoxPro project.

Clicking the Convert button will place the pre-converted script into the Converted Script field.

Code Conversion Workbench Manual - 34

Using the Microsoft Access Code Conversion Workbench - Access to FmPro
Conversions

This chapter shows how to use the Microsoft Access Code Conversion Workbench - included with
the AI Accelerated version of FmPro Migrator. This feature replaces copying the unconverted
scripts into the FileMaker Pro database as was done previously. Before performing the code
conversion with the Microsoft Access Code Conversion Workbench, you should have already
imported the Microsoft Access database into FmPro Migrator, including tables, relationships,
value lists, forms/reports and scripts.

Access to FmPro Migration Button - GUI Tab

Click the Access to FmPro Migration button on the GUI tab of the Migration Process window of
FmPro Migrator.

https://www.fmpromigrator.com/services/access_to_fmpro_service.html

Code Conversion Workbench Manual - 35

Access to FmPro Migration Window

Prior to reaching this step, you should have, (1) selected the AccessDDRExport text file and (2)
clicked the Migrate button to import the Access database metadata into FmPro Migrator. You may
have already started building the new FileMaker Pro database which would mean that you are
ready (3) to click the Code Conversion Workbench button.

Code Conversion Workbench Manual - 36

Microsoft Access Code Conversion Workbench Window

By default, the Microsoft Access Code Conversion Workbench window opens with the (1) scripts
listed in the grid, (2) Microsoft Access selected as the Source Database Type and (3) FileMaker
Pro selected as the destination language.

Just because the options are selected a certain way when the window opens, doesn't mean you
can't change them. You can easily change the default settings on this window for Output
Language, Vendor, API Key Type, or AI Model - and the changes will be saved into the project or
application preferences for FmPro Migrator.

Code Conversion Workbench Manual - 37

Using Drag & Drop with the Converted Script Field

A text (.txt) file or XML (.xml) file can be imported into the Converted Script field from the desktop on
macOS or Windows.

Code Conversion Workbench Manual - 38

Copying Scripts into FileMaker Script Workspace via the Clipboard

Once the text or XML file has been imported into the Converted Script field, it can be copied and
pasted into the FileMaker Pro Script Workspace with the (1) clipboard button.

Code Conversion Workbench Manual - 39

Pasting Script into Script Workspace

(2) Click on an existing script in the list, then select Paste from the Edit menu. FileMaker Pro will
read and import as much of the script XML as it can, and create the script.
Note: It is a good idea to also generate a text version of the script by the LLM and paste it as well
so that both versions can be compared - in case some script steps were unreadable by the
FileMaker database.

Code Conversion Workbench Manual - 40

Google Gemini 3 Pro Generates Script XML for FileMaker Pro

The Code Conversion Workbench automatically adds "xml" to the script conversion prompt for
Google models when converting to FileMaker Pro, which is in addition to the Anthropic models.
However it has been found that only the Google Gemini 3 Pro model generates script xml which
can be pasted via the clipboard into FileMaker. The Gemini 3.0 Flash model doesn't usually
generate XML for script steps which can be pasted into FileMaker.
The prompt is fully editable, so that removing the "xml" from the prompt and disabling the
associated Training Record will also generate plain text which the Code Conversion Workbench
also copies to the clipboard for pasting into FileMaker Pro.

Microsoft Access Code Conversion Workbench Demo

If you forgot to enter your license key or didn't have a license for the AI Accelerated version of
FmPro Migrator, then the Microsoft Access Code Conversion Workbench will open in Demo mode.
A previously converted set of sample scripts will be displayed in the grid instead of the scripts
from your own Microsoft Access database. Clicking any of the scripts will display the text "This
demo only includes a few scripts." in the Source Script field.
[At the present time, there aren't any Microsoft Access demo scripts.]

Code Conversion Workbench Manual - 41

Using the FmPro Code Conversion Workbench - FmPro to Access Conversions

This chapter shows how to use the FmPro Code Conversion Workbench. Before performing the
code conversion with the FmPro Code Conversion Workbench, you should have already imported
the FileMaker Pro database into FmPro Migrator, including tables, relationships, value lists,
layouts and scripts.

FmPro to Access Migration Button - GUI Tab

Click the FmPro to Access Migration button on the GUI tab of the Migration Process window of
FmPro Migrator.

https://www.fmpromigrator.com/services/fmpro_to_access_service.html

Code Conversion Workbench Manual - 42

FmPro to Access Migration Window

Prior to reaching this step, you should have already imported the FileMaker Pro database into
FmPro Migrator, (1) clicked the Migrate button to create the new Access database and run the
_LoadAllFormsAndReports.bas script within the AccessDBFiles folder. After you have built the
new Access database with all of the new forms/reports converted from the FileMaker Pro
database you are ready (2) to click the Code Conversion Workbench button.

Note: Using the FmPro Code Conversion Workbench replaces the need to run the existing
_FmProConvertedScriptsVBA.bas VBA script.

Code Conversion Workbench Manual - 43

FmPro Code Conversion Workbench Window

By default, the FmPro Code Conversion Workbench window opens with the (1) scripts listed in the
grid, (2) FileMaker Pro selected as the Source Database Type and (3) Microsoft Access VBA
selected as the Output Language.

Just because the options are selected a certain way when the window opens, doesn't mean you
can't change them. You can easily change the default settings on this window for Output
Language, Vendor, API Key Type, or AI Model - and the changes will be saved into the project or
application preferences for FmPro Migrator.

Code Conversion Workbench Manual - 44

FmPro Code Conversion Workbench Demo

If you forgot to enter your license key or didn't have a license for the AI Accelerated version of
FmPro Migrator, then the FmPro Code Conversion Workbench will open in Demo mode.
A pre-converted set of sample scripts will be displayed in the grid instead of the scripts from your
own FileMaker Pro database. Clicking any of the scripts will display the text "This demo only
includes a few scripts." in the Source Script field.
[At the present time, there aren't any FileMaker Pro to Access demo scripts.]

Code Conversion Workbench Manual - 45

Using the FmPro Code Conversion Workbench - FmPro to Servoy Conversions

This chapter shows how to use the FmPro Code Conversion Workbench. Before performing the
code conversion with the FmPro Code Conversion Workbench, you should have already imported
the FileMaker Pro database into FmPro Migrator, including tables, relationships, value lists,
layouts and scripts.

Just because this chapter of the manual is showing the conversion of FileMaker Pro scripts to
Servoy, it is also possible to convert Visual FoxPro and Microsoft Access code to Servoy JavaScript.

Servoy Migration Button - GUI Tab

Click the Servoy Migration button on the GUI tab of the Migration Process window of FmPro
Migrator.

https://fmpromigrator.com/services/fmpro_servoy_service.html

Code Conversion Workbench Manual - 46

Servoy Migration Window

Prior to reaching this step, you should have already imported the FileMaker Pro database into
FmPro Migrator and created your Servoy project. It is not necessary to click the Migrate button on
this window, because you could have created the Servoy project manually. You are now ready (1)
to click the Code Conversion Workbench button.

Code Conversion Workbench Manual - 47

FmPro Code Conversion Workbench Window

By default, the FmPro Code Conversion Workbench window opens with the (1) scripts listed in the
grid, (2) FileMaker Pro selected as the Source Database Type and (3) Servoy JavaScript selected
as the Output Language.

Just because the options are selected a certain way when the window opens, doesn't mean you
can't change them. You can easily change the default settings on this window for Output
Language, Vendor, API Key Type, or AI Model - and the changes will be saved into the project or
application preferences for FmPro Migrator.

Code Conversion Workbench Manual - 48

FmPro Code Conversion Workbench Demo

If you forgot to enter your license key or didn't have a license for the AI Accelerated version of
FmPro Migrator, then the FmPro Code Conversion Workbench will open in Demo mode.
A pre-converted set of sample scripts will be displayed in the grid instead of the scripts from your
own FileMaker Pro database. Clicking any of the scripts will display the text "This demo only
includes a few scripts." in the Source Script field.
[At the present time, there aren't any FileMaker Pro to Servoy demo scripts.]

Code Conversion Workbench Manual - 49

Using the FmPro Code Conversion Workbench - FmPro to PHP Conversions

This chapter shows how to use the FmPro Code Conversion Workbench. Before performing the
code conversion with the FmPro Code Conversion Workbench, you should have already imported
the FileMaker Pro database into FmPro Migrator, including tables, relationships, value lists,
layouts and scripts.

Just because this chapter of the manual is showing the conversion of FileMaker Pro scripts to
PHP, it is also possible to convert Visual FoxPro and Microsoft Access code to PHP.

PHP Migration Button - GUI Tab

Click the PHP Conversion button on the GUI tab of the Migration Process window of FmPro
Migrator.

https://fmpromigrator.com/services/php_conversion.html

Code Conversion Workbench Manual - 50

PHP Conversion Window

Prior to reaching this step, you should have already imported the FileMaker Pro database into
FmPro Migrator, (1) created your PHP project with the Convert button. You are now ready to (2)
click the Code Conversion Workbench button.

Code Conversion Workbench Manual - 51

FmPro Code Conversion Workbench Window

By default, the FmPro Code Conversion Workbench window opens with the (1) scripts listed in the
grid, (2) FileMaker Pro selected as the Source Database Type and (3) PHP selected as the Output
Language.

Just because the options are selected a certain way when the window opens, doesn't mean you
can't change them. You can easily change the default settings on this window for Output
Language, Vendor, API Key Type, or AI Model - and the changes will be saved into the project or
application preferences for FmPro Migrator.

In this example, you can see that Laraval has been written into the conversion prompt and that
MySQL is the output database. This text is fully modifiable, giving the developer the option to enter
any PHP framework or database server.

Code Conversion Workbench Manual - 52

FmPro Code Conversion Workbench Demo

If you forgot to enter your license key or didn't have a license for the AI Accelerated version of
FmPro Migrator, then the FmPro Code Conversion Workbench will open in Demo mode.
A pre-converted set of sample scripts will be displayed in the grid instead of the scripts from your
own FileMaker Pro database. Clicking any of the scripts will display the text "This demo only
includes a few scripts." in the Source Script field.

Code Conversion Workbench Manual - 53

Using the FmPro Code Conversion Workbench - FmPro to LiveCode Conversions

This chapter shows how to use the FmPro Code Conversion Workbench. Before performing the
code conversion with the FmPro Code Conversion Workbench, you should have already imported
the FileMaker Pro database into FmPro Migrator, including tables, relationships, value lists,
layouts and scripts.

Just because this chapter of the manual is showing the conversion of FileMaker Pro scripts to
LiveCode, it is also possible to convert Visual FoxPro and Microsoft Access code to LiveCode.

LiveCode Conversion Button - GUI Tab

Click the LiveCode Conversion button on the GUI tab of the Migration Process window of FmPro
Migrator.

https://fmpromigrator.com/services/dbtolivecode_service.html

Code Conversion Workbench Manual - 54

LiveCode Conversion Window

Prior to reaching this step, you should have already imported the FileMaker Pro database into
FmPro Migrator, (1) created your new LiveCode stack with the Migrate button. You are now ready
to (2) click the Code Conversion Workbench button.

Code Conversion Workbench Manual - 55

FmPro Code Conversion Workbench Window

By default, the FmPro Code Conversion Workbench window opens with the (1) scripts listed in the
grid, (2) FileMaker Pro selected as the Source Database Type and (3) LiveCode selected as the
Output Language.

Just because the options are selected a certain way when the window opens, doesn't mean you
can't change them. You can easily change the default settings on this window for Output
Language, Vendor, API Key Type, or AI Model - and the changes will be saved into the project or
application preferences for FmPro Migrator.

In this example, you can see that LiveCode has been written into the conversion prompt and that
MySQL is the output database. This text is fully modifiable giving the developer the option to enter
any database server.

Code Conversion Workbench Manual - 56

FmPro Code Conversion Workbench Demo

If you forgot to enter your license key or didn't have a license for the AI Accelerated version of
FmPro Migrator, then the FmPro Code Conversion Workbench will open in Demo mode.
A pre-converted set of sample scripts will be displayed in the grid instead of the scripts from your
own FileMaker Pro database. Clicking any of the scripts will display the text "This demo only
includes a few scripts." in the Source Script field.
[At the present time, there aren't any FileMaker Pro to LiveCode demo scripts.]

Code Conversion Workbench Manual - 57

Using the VFP Code Conversion Workbench - Visual FoxPro to .NET Conversions

This chapter shows how to use the VFP Code Conversion Workbench. Before performing the
code conversion with the FmPro Code Conversion Workbench, you should have already imported
the Visual FoxPro project into FmPro Migrator, including tables, relationships, value lists,
forms/reports and scripts.

Just because this chapter of the manual is showing the conversion of Visual FoxPro scripts to
.NET, it is also possible to convert FileMaker Pro and Microsoft Access code to .NET.

LiveCode Conversion Button - GUI Tab

Click the .NET Conversion button on the GUI tab of the Migration Process window of FmPro
Migrator.

https://fmpromigrator.com/services/dbtodotnet_service.html

Code Conversion Workbench Manual - 58

.NET Conversion Window

Prior to reaching this step, you should have already imported the Visual FoxPro project into FmPro
Migrator using the Visual FoxPro Conversion button on the GUI tab, (1) created your new .NET
project with the Migrate button. You are now ready to (2) click the Code Conversion Workbench
button.

Code Conversion Workbench Manual - 59

FmPro Code Conversion Workbench Window

By default, the VFP Code Conversion Workbench window opens with the (1) scripts listed in the
grid, (2) Visual FoxPro selected as the Source Database Type and (3) C# selected as the Output
Language.

Just because the options are selected a certain way when the window opens, doesn't mean you
can't change them. You can easily change the default settings on this window for Output
Language, Vendor, API Key Type, or AI Model - and the changes will be saved into the project or
application preferences for FmPro Migrator.

Code Conversion Workbench Manual - 60

VFP Code Conversion Workbench Demo

If you forgot to enter your license key or didn't have a license for the AI Accelerated version of
FmPro Migrator, then the VFP Code Conversion Workbench will open in Demo mode.
A pre-converted set of sample scripts will be displayed in the grid instead of the scripts from your
own Visual FoxPro project.

Clicking the Convert button will place the pre-converted script into the Converted Script field.

Code Conversion Workbench Manual - 61

Using Google Gemini Models

Google Gemini models are supported within the Code Code Conversion Workbench.

Google Models

When selecting Google as the AI Vendor, the gemini-10-pro model will be automatically selected.
Click the Refresh button next to the model menu to see any updates to the list of available
models.

Based upon testing experience, the gemini-1.0-pro models are not very useful for automated
code conversion.

At the present time, the gemini-3.0-pro, gemini 3.0-flash, models are the best Google models to
use for code conversion tasks.

Note:
Holding down the shift key when clicking the Refresh button will display a much longer list of
models. These additional models are not functional for code conversion tasks and will return an
error if you attempt to use them.

Code Conversion Workbench Manual - 62

Google Gemini 3 Pro Generates Script XML for FileMaker Pro

The Code Conversion Workbench automatically adds "xml" to the script conversion prompt for
Google models when converting to FileMaker Pro, which is in addition to the Anthropic models.
However it has been found that only the Google Gemini 3 Pro model generates script xml which
can be pasted via the clipboard into FileMaker. The Gemini 3.0 Flash model doesn't usually
generate XML for script steps which can be pasted into FileMaker.
The prompt is fully editable, so that removing the "xml" from the prompt and disabling the
associated Training Record will also generate plain text which the Code Conversion Workbench
also copies to the clipboard for pasting into FileMaker Pro.

Code Conversion Workbench Manual - 63

Installing Ollama for Running LLMs Locally

Ollama is a software package which manages downloading, managing and serving open source
LLMs on your local computer.

Installing Ollama

Download and install Ollama from the Ollama.com website. Client software is available for
macOS, Windows.
There are some considerations regarding the computer you choose for running local LLMs.
Computers should have enough RAM to load the models into memory. Having one or more fast
GPUs will also improve performance. A fast SSD will improve the performance of loading the
model into memory.

https://ollama.com

Code Conversion Workbench Manual - 64

Available FmPro Migrator Editions for Using Ollama

Using Ollama to serve local LLMs is available with the FmPro Migrator Custom Development
License and FmPro Migrator Site License Edition.

The FmPro Migrator Custom Dev Trial Edition also supports running LLMs locally with Ollama.

https://www.fmpromigrator.com/order/index.html
https://www.fmpromigrator.com/order/index.html
https://www.fmpromigrator.com/order/index.html#trial

Code Conversion Workbench Manual - 65

FmPro Migrator Site License Edition Server Diagram

FmPro Migrator Site License Edition is available with high performance server hardware
optimized for running LLMs locally. FmPro Migrator software executes on each client machine,
requesting code conversions from the server and retrieving the resulting code. This configuration
ensures that the high-performance CPU/GPU hardware is accessible to an entire development
team.

The server in this diagram is running Ollama software and Ollama is managing the installation,
loading and unloading of LLMs into memory. The server is providing the CPU/GPU processing of
the scripts and sending back the results to the client computers. The scripts being converted ARE
NOT being stored on the server. Only the LLM files and a Ollama log file are being stored on the
server.

The Ollama log file is located at the following path:
/Users/<USER>/.ollama/logs/server.log

Use the cat command to read the contents of the log file.
cat ~/.ollama/logs/server.log

Use the tail command to observe the additions to the log file as it is running.
tail ~/.ollama/logs/server.log

Code Conversion Workbench Manual - 66

Downloading Model - Microsoft Phi4 14.7B

Microsoft's open source phi4 14B model has been distilled from the OpenAI GPT-4 model.
Essentially, Phi-4 takes the knowledge from GPT-4 and compresses it into a smaller, more
efficient model running locally instead of in the cloud.

Clicking the Models link at the top of the Ollama web page opens a list of available models.

Type the following command into a command prompt/terminal window to download a local copy
of a model. For this example, the phi4 model is being used.

ollama run phi4:14b

Code Conversion Workbench Manual - 67

This command loads a 9.1GB phi4 file with 14.7B parameters. The phi4 model generally seems
to provide results better than with OpenAI gpt-4o and Google Gemini 1.5-pro, and it works
especially well at following the instructions provided in the training records.

If you have more VRAM or Unified Memory as used on Apple Silicon machines, you can load
larger versions of this model than shown in this example.

Downloading Model - Qwen2.5-Coder

ollama run qwen2.5-coder:14b

This command loads a 9 GB qwen2.5-coder file with 14B parameters. The Qwen2.5-Coder
models generally seem to provide results better than DeepSeek-R1, and they work especially
well at following training records. In testing with the Code Conversion Workbench this model
comes in #2 behind the Microsoft Phi4 model.

If you have more VRAM or Unified Memory as used on Apple Silicon machines, you can load
larger versions of this model than shown in this example.

Code Conversion Workbench Manual - 68

Downloading Model - DeepSeek-R1

The following command:

ollama run deepseek-r1:7b

Loads the DeepSeek-R1 4.7GB model with 7B parameters. This model is a thinking model and
generally DOES NOT closely follow the training records. DeepSeek-R1 has a lower output token
count of 4k versus 16k for Microsoft's Phi4 model

If you have more VRAM or Unified Memory as used on Apple Silicon machines, you can load
larger versions of this model than shown in this example. But overall, the Phi4 and
Qwen2.5-Coder models have worked better overall - especially at following the training records.

Refreshing Models List

The first step to perform when using the Ollama models is to refresh the list of models. The
default list represents the models built into FmPro Migrator during development, and won't reflect
the actual models you have installed on your computer. Once you install models into Ollama, the
list of available models will be stored in the FmPro Migrator preferences file on your local
computer.

Code Conversion Workbench Manual - 69

If you select an Ollama model which is not available, you will see an error like the following:

model 'codegemma:7b-code' not found, try pulling it first

Ollama Localhost API Endpoint Connectivity

Problem Symptoms:

1) The models Refresh button displays the above error message because the Ollama server
cannot be located.
2) The red error result text "Script Not Converted - Too Long?" will immediately be displayed above
the Converted Script field as soon as the Convert button is clicked.

FmPro Migrator needs to have local network access to the Ollama server endpoint when using
Ollama machine learning models. The default URL for this local server is:

http://localhost:11434

Troubleshooting:
1) Make sure that the Ollama server is running. The server is started when launching the Ollama
app, and a menu item will be displayed enabling control of the server. After the initial
installation/configuration the app will quit as soon as it is launched - leaving the menu item.
2) You can go to the endpoint URL with a web browser and verify that you see the text:
Ollama is running

Note: When initially configured, "localhost" is the only address from which the Ollama server will
respond.
Running the following command on macOS enables connections from other computers - but this
command doesn't persist across restarts:
launchctl setenv OLLAMA_HOST "0.0.0.0"
The text of the next section can be placed into a file named ollama.plist which will persist these

http://localhost:11434

Code Conversion Workbench Manual - 70

settings across restarts. The plist file gets installed in the path:
/Library/LaunchDaemons/ollama.plist

On Windows, the various parameters are configured with environment variables according to this
article:
https://docs.dify.ai/tutorials/model-configuration/ollama

In the plist info - the user name has been replaced with <USER> which needs changed to
represent the username under which Ollama is installed.

The localhost:11434 URL doesn't need to be entered into the Endpoint URL field, if it is left blank
the default value shown above will be used automatically.

Ollama plist for macOS - Enables Multi-User Connections

<?xml version="1.0" encoding="UTF-8"?>
<!DOCTYPE plist PUBLIC "-//Apple//DTD PLIST 1.0//EN"
"http://www.apple.com/DTDs/PropertyList-1.0.dtd">
<plist version="1.0">
 <dict>
 <key>Label</key>
 <string>ollama</string>
 <key>StandardOutPath</key>
 <string>/Users/<USER>/.ollama/launchd.stdout.log</string>
 <key>StandardErrorPath</key>
 <string>/Users/<USER>/.ollama/launchd.stderr.log</string>
 <key>EnvironmentVariables</key>
 <dict>
 <key>OLLAMA_HOST</key>
 <string>0.0.0.0:11434</string>
 </dict>
 <key>ProgramArguments</key>
 <array>
 <string>/usr/local/bin/ollama</string>
 <string>serve</string>
 </array>
 <key>UserName</key>
 <string><USER></string>
 <key>GroupName</key>
 <string>staff</string>
 <key>ExitTimeOut</key>
 <integer>30</integer>
 <key>Disabled</key>

https://docs.dify.ai/tutorials/model-configuration/ollama

Code Conversion Workbench Manual - 71

 <false />
 <key>KeepAlive</key>
 <true />
 </dict>
</plist>

Selecting an Ollama Model

Ollama provides a way to load models into memory with the command:

ollama run <model name>

The Code Conversion Workbench GUI automates this task. Just select a model from the list and
in a few seconds it will be loaded. The message:

Switched to model: <model name>

will be displayed in the Converted script field.

Code Conversion Workbench Manual - 72

Ollama Models to Avoid

The granite3.1-dense:8b model is one of the default models built into the Model menu during
development.

This model was used during testing and has not been found to be suitable for code conversion
tasks - so please don't install it. Feel free to install other models suitable for your computer
hardware if you like.

Some of the models to avoid include:
granite3.1
gemma2
gemma:2b

Some models which have worked well for code conversion with training records include:
phi4
qwen2.5-coder
llama3

Note: Each Ollama supported model name consists of 2 pieces of information.
The left portion of the menu shows the name of the model as it has been installed locally.
The right portion of the menu (9B, 3B, 8B) shows the number of parameters used to train the
model. Generally higher numbers produce better code but take longer to run. This way you can
easily determine the best mix of size and performance you want to use for your conversion project.

Code Conversion Workbench Manual - 73

Testing of Various Models - Conclusions

Code Conversion Workbench Manual - 74

Batch Processing of Scripts

When using Ollama to run local LLMs, the Code Conversion Workbench enables the batch
processing feature.

Code Conversion Workbench Manual - 75

Batch Processing Button

Clicking the Batch button opens the Code Conversion Workbench Batch Processing window.
Batch processing of scripts includes the following features:
All - Convert all scripts
Selected Scripts - Convert all of the scripts selected in the grid. Shift - select to select a
contiguous range of scripts, Control Select to select addition non-contiguous scripts in the list.
None - Converts none of the scripts
Completed - Converts the scripts in the grid which have a status of Completed.
Not Started - Converts the scripts in the grid which have a status of Not Started.

Code Conversion Workbench Manual - 76

Script Prefix/Script Suffix

Each converted script may be named with script prefix or suffix text by entering values into these
two fields of the Batch Processing window.

Script Splitting Option

The Script Splitting menu provides for splitting of individual scripts in order to reduce the amount
of text sent to the LLM to be manageable for the context size of the LLM.
These splitting options include:
None - Scripts won't be split and will be sent in their entirety to the LLM for processing.
Procedure - [Visual FoxPro only] Scripts will be split by procedure or function and sent individually
to the LLM.
Size - Scripts may also be split by size. This is the least desirable splitting method, because the
LLM won't have the entire script available at one time for it to process. But sometimes this is
necessary in order to match the context size of the model you have chosen.

Code Conversion Workbench Manual - 77

Script Splitting by Size

When the Size option has been selected from the Script Splitting menu, the Max Size field will be
visible. In this example, 5000 characters has been entered so the scripts will be split into 5000
character chunks for processing. The resulting output files will include the splitting info (1_10,
2_10, 3_10) etc for example if the file was split into 10 pieces.

Start Batch Processing

Once the options have been selected, click the Start button. The converted scripts and Log file will
be written into the Converted_Scripts folder.

Code Conversion Workbench Manual - 78

Processing Window Progress Details

As the processing is being done, progress info will be displayed in the Batch Processing window.

Processing Window Cancel

Clicking the Cancel button immediately closes the Batch Processing window, but processing of
the current script will continue until the LLM has completed. Starting a new batch is possible
before the LLM finishes the current script.

Code Conversion Workbench Manual - 79

Log File Example - Entire Scripts

When doing batch processing, a log file is created with the results of each processed script. The
log file is named: Script_Conversion_Log_YYYY-MM-DD_TIME. There is header/footer text info in
the log file with the remainder of the info output as TAB delimited data - ready for pasting into a
spreadsheet.

This log shows the model name, total processing time, token usage by file and total usage along
with the script prefix/suffix info entered into the Batch Processing window.

Code Conversion Workbench Manual - 80

Log File Example - Splitting by Procedure

When splitting scripts by procedure, the Opening/Closing blocks of code shown in the
Procedures/Functions menu are omitted because they often duplicate existing code within the
procedure/function and might include all of the code in the original script - which defeats the
purpose of splitting the code.

Looking at this log, you can see that there were only 2 procedures in the file and they have been
saved with descriptive names showing the original script name followed by the
procedure/function name.

Code Conversion Workbench Manual - 81

Log File Example - Splitting by Size

The script Prefix/Suffix info has been removed for this test, showing that the file was split into 2
pieces named main1-2.cs, and main2-2.cs based upon processing 5000 characters at a time.

Code Conversion Workbench Manual - 82

Training

Code Conversion Workbench Manual - 83

Training Machine Learning Models

The Code Conversion Workbench Training feature empowers developers to customize the
automated conversion process, extending the output of LLMs beyond the instructions provided in
the prompt.
This feature allows developers to define unique features to be performed by the machine learning
model using plain English text examples. It is LLM model-agnostic and instructs the model
precisely on how the converted code should be written. Developers can add as many training
records as necessary and enable or disable them as required during code conversion.

Several advantages of utilizing the Training feature include:
1) The quality of generated code using Training records is virtually 100% accurate.
2) Mistakes in the output code generated by LLMs can generally be improved to the desired
quality level by adding Training records.
3) The overall quality of output generated by LLMs can be enhanced. Faster-performing models
running locally through Ollama can achieve a quality comparable to higher-cost public models by
using Training records. This is particularly important in situations where customers cannot utilize
public LLMs due to security and privacy concerns.

Mastering this feature requires practice and experience. The most challenging aspect is adapting
to providing instructions in English to LLMs instead of programming syntax.

Opening the Training Tab

The Training feature is opened by clicking the Training tab at the top left corner of the Code
Conversion Workbench window.

Code Conversion Workbench Manual - 84

Associating Training Records with a Conversion Type

Training records are associated with a conversion type selected on the Code Conversion
Workbench window (either the Code or Training screens). So for instance if you are converting
Visual FoxPro to C# and you create training records for that type of conversion - those records will
only be displayed when these menus are selected for Visual FoxPro and C#.

If you wanted to convert Visual FoxPro to FileMaker Pro - then you might have created a separate
set of training records for that exact type of conversion project. As soon as the menus are
selected, the list of records will be displayed for that combination of Source and Output Language.
This is why you will see extra records in the JSON file which might not have been displayed for
your exact conversion project.

Importing/Exporting/Adding/Deleting Training Records

By default, the Code Conversion Workbench won't display any training records until the records
are either imported or created by the developer. Customers can request the latest training records
from .com Solutions Inc.

Training records are stored in the file named CCWTraining.JSON in the following location:

macOS
/Users/<USER>/Library/Preferences/FmPro Migrator/CCWTraining.JSON

Windows
Documents/FmPro Migrator/CCWTraining.JSON

The training records are opened automatically when the Code Conversion Workbench window is
opened.

Code Conversion Workbench Manual - 85

The toolbar above the Training Records grid enables management of these records.

Refresh - Refreshes the list of training records, though in most cases this button won't be needed.

Import - Imports training records sent by .com Solutions Inc. or other developers on a conversion
team for instance if the Site License Edition is being used. Only non-duplicated records are
imported, based upon a check sum value included within each exported record in the JSON file.

Export - Exports the green colored "Active" records in the grid.

Add - Creates a new blank record ready for adding text. Training records are associated with a
Source and Output Language. Please check the Source and Output Language menus when
creating a new training record - as these parameters determine when the records will be
displayed and used for conversions.

Delete - Deletes the currently selected training record.

Code Conversion Workbench Manual - 86

Training Tab - FoxPro to C# Examples

These are some example records used for FoxPro to C# conversions. 4 of the records are Active -
which means that they will be used during the conversion process. Records can be
Checked/Unchecked as needed for testing purposes to verify how the training records are being
used during the conversion. Most of the time these records don't interfere with each other - but if
you gave conflicting instructions this could occur.

Code Conversion Workbench Manual - 87

FoxPro to C# - inlist() Example Training Record

For this example training record, we want the LLMs to do the following:

Convert this FoxPro code:
inlist(job.option,'ABC','DEF','XYZ')

into this C# code:
StartsWithAny(job.option, "ABC", "DEF", "XYZ")

Instead of this default code:
(job.option == "ABC" || job.option == "DEF" || job.option == "XYZ")

This way we can have more control over the automated conversion processing. If we don't add
this training record, the LLMs will usually convert the inlist() function to C# in the default manner
shown above, which is a little harder to read. We can also have more control over our code base
by adding additional features within the StartsWithAny() method in the future. This way we can
handle edge cases without having to manually re-write the entire code base looking for all of the
individual comparison statements.

Elements of a Good Training Record - inlist() to StartsWithAny()

The goal with adding a training record is to provide an example combined with an English
explanation of how we want the code converted.

In this example, there are 2 elements to the Source Script Example Code text:

Part#1
Replace inlist() with a user written StartsWithAny() function accepting a string and returning a
boolean value.

Code Conversion Workbench Manual - 88

Part #1 of the Source example is the English text explaining what we want the LLM to do when it
sees the example code. This one single English text sentence makes the biggest difference in
whether the LLM follows our instructions. We are basically telling the LLM to look for the FoxPro
inlist() function and substitute the StartsWithAny() function or method and we are describing that
we want to pass in a string and receive a boolean value to mimic the functionality of the original
FoxPro built-in function.

Part#2
inlist()

Part#2 of the Source Script Example follows on another line following the text, and provides an
example of the FoxPro code.

There is only one part to the Converted Script Example Code text:

Part#1
string.StartsWithAny()

This is the output we want the LLM to create. And this is all we need. The LLMs have enough info
about the Source and Output languages to know that the parameters need to be added within the
parenthesis, and for each instruction converted these parameters will be added automatically
where they are needed.

Code Conversion Workbench Manual - 89

Training Tab - FoxPro to FileMaker Pro Examples

These are 3 example records for FoxPro to FileMaker Pro conversions. All of the records are Active
- which means that they will be used during the code conversion process.

Elements of a Good Training Record - FoxPro to FileMaker - Find Requests

In this example, there are 2 elements to the Source Script Example Code text:

Part#1
Use FileMaker Find requests in place of Execute SQL statements

We are telling the LLM to create FileMaker Find requests instead of using Execute SQL steps. If
we don't provide this training record, the LLMs will generally use Execute SQL commands as a
replacement for the SQL commands and queries found in the FoxPro code. Using Find Requests
will result in a Found Set which will be immediately usable for looping through the records,
sorting or direct display to the user via a Go to Layout step to a SubSummary layout. This is easier
than putting the Execute SQL results into a variable and then working thru the results to write them

Code Conversion Workbench Manual - 90

into a temp database table for instance.

Part#2

Part#2 of the Source Script Example isn't needed for this training record.

There are several lines used for the Converted Script Example Code text:

Part#1
Enter Find Mode
Set Field
Perform Find

This text provides an example of the FileMaker script steps required to implement a Find Request.

The result is that the LLMs generally do a very good job of creating Find Requests for FileMaker
Pro queries as a replacement for SQL statements in the original FoxPro application.

Code Conversion Workbench Manual - 91

Troubleshooting

Code Conversion Workbench Manual - 92

Troubleshooting - Code Conversion Workbench

Script Too Large - Error Returned From Model

This screenshot shows an example of a large script which exceeds the 4097 tokens available
with the selected AI model. This message was returned from the server and it shows that there
are 6589 tokens contained in the 20,234 characters of text sent to the model. A token represents
approximately 1 to 3 characters of text. Fortunately, there are models available with a capacity
of up to 16,000 tokens.
1) One potential solution is to use one of the 16K token capacity models like gpt-3.5-turbo-16k.

Code Conversion Workbench Manual - 93

2) Another option is to try breaking up the script into individual procedures/functions. This can be
advantageous even when a 16K model is available because sometimes the larger capacity
models get overloaded.

Script Not Converted - Too Long [Red Warning Text]

This error is not returned from the server, it is displayed by the Code Conversion Workbench as a
result of not receiving a response from the server. Therefore it is estimated by the software that
the result could be due to the script being too long.
But it is also possible that the model was overloaded on the server. The gpt4 model was used for
this test and experience has shown that the gpt4 model seems to get overloaded more often than
the gpt-3.5-turbo model.

Code Conversion Workbench Manual - 94

1) One possible solution is to break up the script into smaller amounts of text. Even though the
script is reasonably sized, but since this script contains 4 individual procedures they could be
converted separately - especially if you really require the additional code conversion quality of the
gpt4 model.
2) Switching models from gpt4 to gpt-3.5-turbo is another option.
3) Trying again after a few minutes if the model is overloaded. Sometimes the models seem to
work more quickly on weekends compared with during the work week.
4) Verify that your internet connection is functioning properly.

OpenAI API Endpoint Connectivity

Problem Symptoms:

1) The models menu Refresh button clears the list of models.
2) The busy indicator spins and doesn't return results or any error message after clicking the
Convert button.

FmPro Migrator needs to have internet access to the OpenAI endpoint when using OpenAI
machine learning models. This URL is:

api.openai.com

Troubleshooting:
Try performing a ping or traceroute command on the endpoint URL to insure that your computer
can connect with the OpenAI API service.

If you cannot reach the endpoint URL, please check with your internet provider or corporate
netoworking/security team for assistance.

http://api.openai.com

Code Conversion Workbench Manual - 95

Google Gemini API Endpoint Connectivity

Problem Symptoms:

1) The models menu Refresh button clears the list of models.
2) The busy indicator spins and doesn't return results or any error message after clicking the
Convert button.

FmPro Migrator needs to have internet access to the Google Gemini API endpoint when using
Google machine learning models. This URL is:

generativelanguage.googleapis.com

Troubleshooting:
Try performing a ping or traceroute command on the endpoint URL to insure that your computer
can connect with the Google Gemini API service.

If you cannot reach the endpoint URL, please check with your internet provider or corporate
netoworking/security team for assistance.

https://generativelanguage.googleapis.com

Code Conversion Workbench Manual - 96

Anthropic API Endpoint Connectivity

Problem Symptoms:

1) The models menu Refresh button clears the list of models.
2) The busy indicator spins and doesn't return results or any error message after clicking the
Convert button.

FmPro Migrator needs to have internet access to the Anthropic API endpoint when using Anthropic
machine learning models. This URL is:

api.anthropic.com

Troubleshooting:
Try performing a ping or traceroute command on the endpoint URL to insure that your computer
can connect with the Anthropic API service.

If you cannot reach the endpoint URL, please check with your internet provider or corporate
netoworking/security team for assistance.

https://api.anthropic.com/v1

Code Conversion Workbench Manual - 97

xAI API Endpoint Connectivity

Problem Symptoms:

1) The models menu Refresh button clears the list of models.
2) The busy indicator spins and doesn't return results or any error message after clicking the
Convert button.

FmPro Migrator needs to have internet access to the xAI API endpoint when using xAI machine
learning models. This URL is:

api.x.ai

Troubleshooting:
Try performing a ping or traceroute command on the endpoint URL to insure that your computer
can connect with the xAI API service.

If you cannot reach the endpoint URL, please check with your internet provider or corporate
netoworking/security team for assistance.

https://api.x.ai/v1

Code Conversion Workbench Manual - 98

Ollama Localhost API Endpoint Connectivity

Problem Symptoms:

1) The models Refresh button displays the above error message because the Ollama server
cannot be located.
2) The red error result text "Script Not Converted - Too Long?" will immediately be displayed above
the Converted Script field as soon as the Convert button is clicked.

FmPro Migrator needs to have local internet access to the Ollama server endpoint when using
Google machine learning models. The default URL for this local server is:

http://localhost:11434

Troubleshooting:
1) Make sure that the Ollama server is running. The server is started when launching the Ollama
app, and a menu item will be displayed enabling control of the server. After the initial
installation/configuration the app will quit as soon as it is launched - leaving the menu item.
2) You can go to the endpoint URL with a web browser and verify that you see the text:
Ollama is running

Note: When initially configured, "localhost" is the only address from which the Ollama server will
respond.
Running the following command on macOS enables connections from other computers - but this
command doesn't persist across restarts:
launchctl setenv OLLAMA_HOST "0.0.0.0"
The text of the next section can be placed into a file named ollama.plist which will persist these
settings across restarts. The plist file gets installed in the path:
/Library/LaunchDaemons/ollama.plist

On Windows, the various parameters are configured with environment variables according to this

http://localhost:11434

Code Conversion Workbench Manual - 99

article:
https://docs.dify.ai/tutorials/model-configuration/ollama

In the plist info - the user name has been replaced with <USER> which needs changed to
represent the username under which Ollama is installed.

The localhost:11434 URL doesn't need to be entered into the Endpoint URL field, if it is left blank
the default value shown above will be used automatically.

Ollama plist for macOS - Enables Multi-User Connections

<?xml version="1.0" encoding="UTF-8"?>
<!DOCTYPE plist PUBLIC "-//Apple//DTD PLIST 1.0//EN"
"http://www.apple.com/DTDs/PropertyList-1.0.dtd">
<plist version="1.0">
 <dict>
 <key>Label</key>
 <string>ollama</string>
 <key>StandardOutPath</key>
 <string>/Users/<USER>/.ollama/launchd.stdout.log</string>
 <key>StandardErrorPath</key>
 <string>/Users/<USER>/.ollama/launchd.stderr.log</string>
 <key>EnvironmentVariables</key>
 <dict>
 <key>OLLAMA_HOST</key>
 <string>0.0.0.0:11434</string>
 </dict>
 <key>ProgramArguments</key>
 <array>
 <string>/usr/local/bin/ollama</string>
 <string>serve</string>
 </array>
 <key>UserName</key>
 <string><USER></string>
 <key>GroupName</key>
 <string>staff</string>
 <key>ExitTimeOut</key>
 <integer>30</integer>
 <key>Disabled</key>
 <false />
 <key>KeepAlive</key>

https://docs.dify.ai/tutorials/model-configuration/ollama

Code Conversion Workbench Manual - 100

 <true />
 </dict>
</plist>

	Code Conversion Workbench Manual
	Table of Contents
	Overview
	Overview

	GUI
	Importing Scripts with the Quick Start Feature
	Import Scripts Menu
	Select Programming Language in Import Scripts Dialog
	Select Import Folder
	Click OK Button
	Imported Scripts in Code Conversion Workbench
	Overwrite Project Dialog
	Editing the Programming Language

	Using the Code Conversion Workbench
	Code Conversion Workbench Window
	1) Window Scale Factor - Pop-up Menu
	2) Load Data Button
	3) Scripts Grid
	Searching the Scripts Grid
	??* Begins With Search
	*?? Ends With Search
	Contains Text Search
	Grid Performance with Thousands of Scripts
	Scripts Grid Sort Feature
	4) Source Database Type Menu
	5) Output Language Menu
	6) Procedure/Function Menu
	7) Section Menu
	8) Vendor Menu
	9) API Key Type
	User API Key Field
	10) AI Model Name
	Model Token Size Tooltip
	11) Model List Refresh Button
	12) Tokens Used Today Label & Usage Tooltip
	Tokens Available per Day Tooltip
	13) Output Filename Field
	Output Filename Tooltip
	14) Source Script Field
	15) Command Field
	16) Convert Button
	17) Converted Script Field
	18) Clipboard Icon
	18) Clipboard Icon - Anthropic/Google Gemini 3.0 Pro & FileMaker Pro Script XML

	Detailed Code Conversion Info
	Using the VFP Code Conversion Workbench
	Visual FoxPro Conversion Button - GUI Tab
	Visual FoxPro Conversion Window
	VFP Code Conversion Workbench Window
	Converting FoxPro 2.6 to Visual FoxPro
	VFP Code Conversion Workbench Demo

	Using the Microsoft Access Code Conversion Workbench - Access to FmPro Conversions
	Access to FmPro Migration Button - GUI Tab
	Access to FmPro Migration Window
	Microsoft Access Code Conversion Workbench Window
	Using Drag & Drop with the Converted Script Field
	Copying Scripts into FileMaker Script Workspace via the Clipboard
	Pasting Script into Script Workspace
	Google Gemini 3 Pro Generates Script XML for FileMaker Pro
	Microsoft Access Code Conversion Workbench Demo

	Using the FmPro Code Conversion Workbench - FmPro to Access Conversions
	FmPro to Access Migration Button - GUI Tab
	FmPro to Access Migration Window
	FmPro Code Conversion Workbench Window
	FmPro Code Conversion Workbench Demo

	Using the FmPro Code Conversion Workbench - FmPro to Servoy Conversions
	Servoy Migration Button - GUI Tab
	Servoy Migration Window
	FmPro Code Conversion Workbench Window
	FmPro Code Conversion Workbench Demo

	Using the FmPro Code Conversion Workbench - FmPro to PHP Conversions
	PHP Migration Button - GUI Tab
	PHP Conversion Window
	FmPro Code Conversion Workbench Window
	FmPro Code Conversion Workbench Demo

	Using the FmPro Code Conversion Workbench - FmPro to LiveCode Conversions
	LiveCode Conversion Button - GUI Tab
	LiveCode Conversion Window
	FmPro Code Conversion Workbench Window
	FmPro Code Conversion Workbench Demo

	Using the VFP Code Conversion Workbench - Visual FoxPro to .NET Conversions
	LiveCode Conversion Button - GUI Tab
	.NET Conversion Window
	FmPro Code Conversion Workbench Window
	VFP Code Conversion Workbench Demo

	Using Google Gemini Models
	Google Models
	Google Gemini 3 Pro Generates Script XML for FileMaker Pro

	Installing Ollama for Running LLMs Locally
	Installing Ollama
	Available FmPro Migrator Editions for Using Ollama
	FmPro Migrator Site License Edition Server Diagram
	Downloading Model - Microsoft Phi4 14.7B
	Downloading Model - Qwen2.5-Coder
	Downloading Model - DeepSeek-R1
	Refreshing Models List
	Ollama Localhost API Endpoint Connectivity
	Ollama plist for macOS - Enables Multi-User Connections
	Selecting an Ollama Model
	Ollama Models to Avoid
	Testing of Various Models - Conclusions

	Batch Processing of Scripts
	Batch Processing Button
	Script Prefix/Script Suffix
	Script Splitting Option
	Script Splitting by Size
	Start Batch Processing
	Processing Window Progress Details
	Processing Window Cancel
	Log File Example - Entire Scripts
	Log File Example - Splitting by Procedure
	Log File Example - Splitting by Size

	Training
	Training Machine Learning Models
	Opening the Training Tab
	Associating Training Records with a Conversion Type
	Importing/Exporting/Adding/Deleting Training Records
	Training Tab - FoxPro to C# Examples
	FoxPro to C# - inlist() Example Training Record
	Elements of a Good Training Record - inlist() to StartsWithAny()
	Training Tab - FoxPro to FileMaker Pro Examples
	Elements of a Good Training Record - FoxPro to FileMaker - Find Requests

	Troubleshooting
	Troubleshooting - Code Conversion Workbench
	Script Too Large - Error Returned From Model
	Script Not Converted - Too Long [Red Warning Text]
	OpenAI API Endpoint Connectivity
	Google Gemini API Endpoint Connectivity
	Anthropic API Endpoint Connectivity
	xAI API Endpoint Connectivity
	Ollama Localhost API Endpoint Connectivity
	Ollama plist for macOS - Enables Multi-User Connections

